On the Rate of Convergence of Krasnosel’skǐi–mann Iterations and Their Connection with Sums of Bernoullis

نویسندگان

  • R. Cominetti
  • J. A. Soto
  • J. Vaisman
چکیده

In this paper we establish an estimate for the rate of convergence of the Krasnosel’skǐı–Mann iteration for computing fixed points of non-expansive maps. Our main result settles the Baillon–Bruck conjecture [3] on the asymptotic regularity of this iteration. The proof proceeds by establishing a connection between these iterates and a stochastic process involving sums of non-homogeneous Bernoulli trials. We also exploit a new Hoeffdingtype inequality to majorize the expected value of a convex function of these sums using Poisson distributions. ∗ Supported by Fondecyt 1100046 and Núcleo Milenio Información y Coordinación en Redes ICM/FIC P10-024F. ∗∗ Supported by Basal-Conicyt project and Núcleo Milenio Información y Coordinación en Redes ICM/FIC P10-024F. Received July 6, 2012 and in revised form November 27, 2012

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Let  be a sequence of arbitrary random variables with  and , for every  and  be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on  and sequence .

متن کامل

Modified frame algorithm and its convergence acceleration by Chebyshev method

The aim of this paper is to improve the convergence rate of frame algorithm based on Richardson iteration and Chebyshev methods. Based on Richardson iteration method, we first square the existing convergence rate of frame algorithm which in turn the number of iterations would be bisected and increased speed of convergence is achieved. Afterward, by using Chebyshev polynomials, we improve this s...

متن کامل

The Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables

In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...

متن کامل

On the Complete Convergence ofWeighted Sums for Dependent Random Variables

We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014